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The onset of a buoyancy-driven instability during the directional solidification of a 
pure liquid with a strongly temperature-dependent viscosity and an arbitrary 
Prandtl number is investigated using linear stability theory. The Rayleigh number 
for this system contains the lengthscale L, defined as the ratio of the thermal 
diffusivity of the liquid and the solidification velocity times the density ratio of the 
two phases. It is independent of the actual depth of the liquid and it reflects the fact 
that increasing the solidification velocity stabilizes the system. The theory also 
shows that the difference in material properties between the two phases and the 
properties of the solidifying interface itself cause the interface to look like a boundary 
of finite conductivity measured by a wavenumber-dependent Biot number. For large 
viscosity variations, convection occurs below a stagnant layer which forms just 
beneath the interface where the liquid is immobilized by its very large viscosity. The 
thickness of this layer is measured by the natural logarithm of the viscosity contrast 
in the liquid times the lengthscale L,. In this limit, the influence of the solidifying 
boundary is shielded from the bulk liquid by the stagnant layer and so the effect of 
the Biot number on the critical Rayleigh number is small. However, inertial effects, 
being associated with the bulk liquid, are very important for small Prandtl numbers 
of the fluid far from the interface. The model has applications to the solidification of 
magma chambers or lava lakes and to  the material processing of polymeric 
liquids. 

1. Introduction 
The influence of thermal convection on various processes in geophysical systems has 

been studied appreciably for the past couple of decades. It has been shown to be of 
importance in determining the temperature field in the Earth’s mantle, in supplying 
the energy needed for continental drift, and in determining the rate of cooling and 
the crystallization structure of large magma chambers in the Earth’s interior. The 
simplest estimates for the magnitude of thermal convection in these systems use the 
model proposed by Lord Rayleigh (1916). In  this model, a liquid layer of constant 
viscosity and thickness is heated from below. Rayleigh’s results and the results of 
others on this system are well reviewed by Chandrasekhar (1961). Briefly, we know 
that the system will undergo convective overturning when the dimensionless 
Rayleigh number, a ratio of buoyancy forces to  viscous forces, exceeds a critical 
value that depends on the boundary conditions. 

Our primary interest is the cooling of large magma chambers in the Earth’s 
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interior or the cooling of large lava lakes on the Earth’s surface. Using the simple 
liquid-layer convection model on these systems is inappropriate for the following 
reasons. First, magma is not a constant-viscosity liquid, as shown by Shaw et al. 
(1968). Secondly, the temperature field in the magma is unsteady owing to the cooling 
process, and thirdly, the depth of the layer may not be the same as the lengthscale 
of the convection. Some of the recent research in this area has been aimed a t  
correcting these deficiencies. 

The first of these concerns has been addressed in the experiments of Booker (1976), 
Richter, Nataf & Daly (1983), Oliver & Booker (1983), and the theory and 
experiments of Stengel, Oliver & Booker (1982). The results of the theoretical work, 
which used a fluid whose viscosity depended exponentially on the temperature, are 
as follows. As the viscosity contrast between top and bottom increases, the critical 
Rayleigh number initially increases, reaches a maximum, and then decreases 
monotonically. The wavenumber initially increases or decreases depending on the 
boundary conditions, but eventually it always increases monotonically with viscosity 
contrast. The simple physical explanation for this behaviour, discussed by Stengel 
et al. (1982), is that for large enough viscosity contrasts across the layer, a stagnant 
layer develops a t  the top and convection occurs in a sublayer a t  the bottom. The 
thickness of this sublayer decreases with increasing viscosity contrast. Thus, if the 
results are rescaled according to the parameters of this convective sublayer, one finds 
that the critical Rayleigh number and the critical wavenumber approach constants 
for large enough viscosity contrasts. This indicates that the parameters of the 
sublayer are the appropriate scales for the problem in this limit. 

The second concern, that of a time-dependent basic state due to cooling of the 
magma, has been explored in the work of Foster (1965), Currie (1967), Mahler, 
Schechter & Wissler (1968), Homsy (1973), Jhaveri & Homsy (1982) and Neitzel 
(1982), to name a few. As reviewed by Homsy (1973), two methods have been used. 
In the first, the time-dependent basic state is frozen and its stability is investigated 
using linear theory with time as a parameter. In  the second, the linearized 
disturbance equations are integrated in time subject to some prescribed initial 
conditions and including the time-dependent basic state. The difficulty here is in 
defining the onset of the instability. In both methods, the computed results do not 
agree well with experiments. However, these problems seem to have been overcome 
in the nonlinear energy theory of Homsy (1973) and Neitzel (1982) and in the 
statistical work of Jhaveri & Homsy (1982). 

In all of the above unsteady work, the liquid was assumed to have a constant 
viscosity. Recently, Jaupart & Parsons ( 1985) combined variable viscosity with a 
time-dependent basic state and integrated the linearized disturbance equations in 
time. Their results also show the development of a stagnant layer above a convecting 
sublayer as described earlier in the variable-viscosity, steady-state work. However, 
their results are still subject to all of the criticisms of the previous unsteady work. 
In addition, they included viscosity as a function of depth alone, independent of the 
dynamics of the system. This is an awkward way to address the temperature 
dependence of viscosity. 

The last concern associated with applying thermal convection models to a cooling 
magma system is that the lengthscale of convection may not be the same as the depth 
of the fluid layer. We have already seen this in the variable-viscosity work when a 
stagnant layer develops in the liquid. A similar change in lengthscales can appear 
owing to a solidification process in the magma. Here, an appropriate lengthscale 
would be based on thermal diffusion and the convection zone it characterizes would 
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move along with the developing solidification front. The system never feels the effect 
of the lower boundary until the upper surface gets sufficiently close to it. 

Shvartsblat, as discussed in the book by Gershuni & Zhukhovitskii (1976), crudely 
modelled this effect by investigating convection in a liquid layer with permeable 
boundaries in which fluid was injected a t  the lower boundary and removed at the 
upper boundary with a constant velocity. A t  large values of this injection velocity, 
a boundary-layer-like temperature profile appeared. Shvartsblat showed that in this 
limit the Rayleigh number and the wavenumber computed with the boundary-layer 
lengthscale became constant. This indicates that the lower boundary has no effect on 
the system’s instability. 

This same boundary-layer behaviour of the basic state has also been seen in 
directional solidification problems of a binary alloy. The model used in such problems 
is the solidification of an originally planar interface a t  a constant velocity into a semi- 
infinite liquid containing a small concentration of another material. In this system, 
the solute is rejected at the freezing interface and two types of instabilities become 
possible. The first is a purely morphological one originally studied by Mullins & 
Sekerka (1964). The second is a convective instability due to the solute material 
being lighter than the liquid it is dissolved in. The interaction of these two modes of 
instablity have been well studied by Coriell et al. (1980), Hurle, Jakeman & Wheeler 
(1982, 1983), McFadden et al. (1984), Caroli et al. (1985a,b) and Young & Davis 
(1986), among others. 

In  the present work, we shall study a model for the onset of thermal convection 
in cooling magma systems which combines the essential features of this previous 
work. The model is the directional solidification of a pure substance with a strongly 
temperature-dependent viscosity. It addresses the first concern by including variable 
viscosity. The inherent unsteadiness of the cooling process is taken into account by 
moving with the solidification interface and assuming that we are far enough away 
from the initial stages of solidification such that the solidification rate is 
approximately constant. This assumption is equivalent to finding a time when the 
rate of change in the solidification rate is much less than the growth rate of the 
thermal instability. This is like the frozen-time approximation done in the earlier 
studies of unsteady thermal convection. The last concern is addressed since the pure 
substance is semi-infinite in extent. Thus, the convection will develop its own 
lengthscale based on thermal diffusion. The actual depth of the liquid in the cooling 
magma system does not enter the model. However, we shall compare these two 
lengthscales to see if our modelling is accurate. 

Since the simple directional solidification model has been extremely useful in 
understanding the processing of binary alloys, we also expect that this model will be 
quite useful in those areas of materials processing which use polymeric fluids that 
have a strongly temperature-dependent viscosity. 

In  $2, we shall formally pose the model and formulate the appropriate linear 
stability equations for the system. The method of solution of this system is described 
in $3. The results for a wide variety of system parameters are given in $4. Finally, 
we discuss the physical meaning of our results and their implication in terms of the 
cooling from above of a large magma chamber or lava lake. 
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FIGURE 1: A sketch of the solidification model. 

2. Problem formulation 
In the model shown in figure 1, a pure liquid with a strongly temperature- 

dependent viscosity is solidifying downward along a planar interface at  the fixed 
velocity V .  The governing equations are written with respect to a Cartesian 
coordinate system fixed in the solid with the z-axis pointing downward. For the solid, 
we have only conservation of energy, 

aT 
= K~ V2Ts, 

at 

where T, is the solid temperature, K~ is the thermal diffusivity of the solid and t is the 
time variable. The density of the solid, ps, is also a relevant parameter. For the 
liquid, we have conservation of energy and mass, and we shall use the Boussinesq 
approximation in the conservation of momentum equation : 

-+v.VT, aTL = K ~ V ' T ~ ,  
at 

(2.2a) 

v-u = 0, (2 .2b )  

p L  { ;+ ( u -  V )  u }  = - v p  +pL ge, + v - (pL  D),  (2 .2c )  

where Dij = ui,j+*j,i, ( 2 . 2 4  

and e, is a unit vector in the z-direction. The equations of state for the density and 
viscosity are 

(2.3a) 

P L  = IuL(TL). (2 .3b )  

Here, TL, u and p ,  are the liquid temperature, velocity and pressure, and K ~ ,  p L ,  p L  
and p are the liquid thermal diffusivity, density, viscosity and thermal-expansion 
coefficient respectively. Also, To is a reference temperature and g is the acceleration 
due to gravity. 

The interface is located at z = y(x,y,t). The normal to the interface is 

( 2 . 4 ~ )  
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t(1) = ( 1 ,  0,?js) ( 1  + Ti)-;, 
t(2) = ( - r s r y , l + r : , r Y ) ( l + r z )  -t ( 1 +T#I:+?g-t, 
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(2.4b)  

( 2 . 4 ~ )  

the tangential vectors are 

and the total curvature of the interface is 

(2 .4d)  

If K < 0, the interface is convex downward. 
The boundary conditions on the interface are continuity of temperature, 

T , = T , = T , ( ~ + K ~ ) ,  (2 .5a ,  b)  

where y is the surface energy a t  the solid-liquid interface, L is the latent heat per unit 
volume of the solid and T, is the melting point of the solid; conservation of 

n .  (k, VT,- k ,  VTL) = L y, e,.n, ( 2 . 5 ~ )  energy f 

where k, and k, are the thermal conductivities of the solid and liquid ; conservation 

(2 .5d)  

Far away from the interface in the liquid we impose a temperature T, > T, and 
also let IvI < 00. Thus, the solidification process is driven by cooling from above. 

To simplify the resulting analysis, we make a Galilean transformation and attach 
a coordinate system to the moving interface. Next, we refer the equations to the 
following scales : reference temperature T, ; temperature difference, AT = T, - T, ; 
velocity, V, = Vps /pL;  length, L, = K,/V,; time, t, = L,/V,; pressure, P, = p, VJL,; 
and viscosity p,, the viscosity at T,. We also define v, = pm/pL and the specific heat 
of the liquid cL = k , / ( p , ~ , ) .  

Our equations reduce to the following: 

for the solid. aT, 1 aT, 
= KV~T, ; 

at p a2 

aTL 
for the liquid, 

-+ V-VTL = V2TL, 
at 

( 2 . 7 ~ )  

v * v  = 0, (2 .7b)  

= -Vp-RT,e,+V.(pD), ( 2 . 7 ~ )  

D,, = v,,,+v,,i; (2 .7d)  

TL = T, = r K ,  (2.8a, b)  

n.{kVT, - VTL} = Y ( p - l +  7,) e, .n,  ( 2 . 8 ~ )  

boundary conditions on z = 7, 

(2 .8d)  

(2 .8e)  

(2 .8f  1 



552 M ,  K .  Xmith 

boundary conditions on z + co , 

TL = 1,  IvI c a. (2.9a, b )  

Here, all velocities are measured in the moving coordinate system and 7 is the 
deviation of the interface from its planar configuration. The dimensionless groups are 
defined as follows : 

K ’ S  K p,ps, k = S  k 

KL PL k L  , 

p = 5  the Prandtl number, 
KL 

R =  K2 the Rayleigh number, 
u ,  v3p3 ’ 

the Stefan number, 
L 

2= 
PLCLAT’ 

r = m  the surface-tension number. 
AT L K ~  ’ 

Also, p = p(TJ  is the dimensionless viscosity function. 

speed V .  Thus, we have 
The basic state under consideration is a planar interface moving at the constant 

(2.10a, b, c) v = - e  3, T = O ,  - dp = -lipL. - 
dz 

This simplifies the liquid energy equation to 

dzTL dTL - -+- - 0, 
dz2 dz 

Thus, 

TL(0) = 0, TL(co) = 1.  

TL = 1 -e-z. (2.11) 

dTs dTL 
dz dz T,(O) = 0, k- (0) = - (0) + 2p-1  

S O  T, = K ~ G ,  { 1 - e-z/K’’}, (2.12) 

where Gs = ( Y + p ) / ( k p )  is the solid temperature gradient a t  the interface. 

stability problem. The perturbations of the basic state are defined as 
Now that we have a steady, basic-state solution, we formulate the standard linear 

T, = Ts+T&, 

v = @ i - v ‘ ,  p = p+p’, 

TL = TL+Ti, (2.13a, b)  

(2.13c,d) 
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Substituting these expressions into the governing equations and linearizing in the 
disturbance quantities yields : 

for the solid, 

for the liquid, 

boundary conditions a t  z = 0, 
T' s -  - T' L +7' 

u' = (l--p-l)& v' = (l-p-l)?&, w' = (1-p)yi; 

boundary conditions a t  z = 00, 

T i  = 0,  

and the boundary condition at z = - 00, 

10'1 < 00 ; 

T i  = 0. 

(2.14) 

( 2 . 1 5 ~ )  

(2.15 b) 

( 2 . 1 5 ~ )  

(2.15d) 

( 2 . 1 6 ~ )  

(2.16b) 

( 2 . 1 6 ~ )  

(2.16d, e , f )  

(2.17a, b) 

(2.18) 

We eliminate the pressure from the liquid momentum equation by taking the curl 
of this equation twice. In  addition, we attempt to find a solution of these disturbance 
equations using normal modes. Thus, 

Pi> %> w', 7'1 = @ S ( 4 ?  c , ( Z ) >  ,42), $1 eUtHfx, y), (2.19) 

where cr = r , + i r i  contains gr, the growth rate, and ui, the frequency of the 
disturbance, and 

V!  H + a2H = 0, (2.20 a )  

(2.20 b) 

where H is the form of the disturbance mode and a is the wavenumber. 

for the solid, 
This results in the following normal-mode disturbance equations : 

~ d ~ - p - ' D ? ~  = K(D2-a2)ps; (2.21) 

(2.22a) 
dTL 
dz 

for the liquid, dL-DFL+-& = (D2-a2)PL, 

{p(D2 - a2) +P-'(D - r) + 2pz D> {D2 - a'} ?j, +pzz(D2 +a2) Zi, + Ra25!L = 0 ; 
(2.22b) 
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boundarv conditions at x = 0. 

( 2 . 2 3 ~ )  

(2.23 b)  

( 2 . 2 3 ~ )  

(2.23d)  

(2.23e) 

boundary conditions at  z = co, 

!PL=O,  zi,<00, D z i , < c ~ ;  (2 .24a,  b, c )  

and the boundary condition at  z = - co, 

Here, D = d/dz. 
!Q = 0. (2.25) 

The solid energy equation (2 .21)  together with the boundary conditions (2 .23a) ,  

$s = Asem', (2.26 a )  

(2.25) and (2.233) can be solved directly. We find 

(2.26 b )  

As = - (GS+a2F)7j .  ( 2 . 2 6 ~ )  

This solution for 5!s can now be used in the last boundary condition ( 2 . 2 3 ~ )  for the 
liquid temperature: This yields the final set of equations that must be solved 

{,E(D2 - a') + 2& D + P-'(D - cr)} {D2 - a'} Zi, + ,Ezz(D2 +a2)  zi, + Ra2PL = 0, 
( 2 . 2 7 ~ )  

(2.27b) 
A dTL 

( D 2 - ~ 2 + D - ~ ) T L - - 8  = 0, 
dz 

Q = cr(i-p)7j on z = 0, (2.27c, d ,  e )  

(2.27.L g ,  h) 
1 D ~ ~ + B @ ~  = o 

Dzi, = a2(1-p- ' )$  

@ L = ~ ,  4.~~0, D ~ ~ , < c o  onz=co .  

Here (2.27 i )  

, (2 .27j )  
1 - kG,{m + 1 / ( p ~  )} - mka2 r - Ycr 

B =  
i +a2r 

kG, = 1 + Y p - ' ,  (2 .27k)  

1 (2.27 1)  
- 1 + [1+ 4 ~ p ' ( ~ a ' +  c)]; 

2KP 
m =  
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and TL = I---%, ji = p(TL). (2.27m, n) 

To proceed with the solution of this set of equations we need to propose a viscosity 
law. Following Stengel et al. (1982), Morris & Canright (1984) and Quareni et al. 
(1985), we shall use an exponential viscosity variation of dimensional form 

p* = ,urn exp { - c(T -T,)}. (2.28) 

Here, we have adjusted the constants so that y*(T,) =,urn. Substituting the 
appropriate scaling for the viscosity and the liquid temperature we obtain 

lu = exp{-h(T,-1)}, (2.29) 

where h = CAT is a measure of the viscosity contrast in the liquid. For the basic state, 
we find 

,ii= exp{-h(TL-l)} =exp{hexp(-z)}. (2.30) 

Thus, p(0) = eh and 
A = In j i(0) = I n k )  , (2.31) 

is the natural logarithm of the viscosity ratio between the interface and the 
isothermal bulk liquid. Here, p r  is the viscosity a t  the solidifying interface. 

3. Method of solution 
As shown in the previous section we have nine dimensionless parameters 

characterizing this problem. However, only four, P,  R, a and A,  appear in the 
differential equations, one more, p, appears in the velocity boundary conditions, and 
all the rest together with the wavenumber appear in the Biot number B. 

To simplify our calculations, we choose K = 1,  p = 1, r= co, and 9 = 0. This 
leaves us with the five dimensionless groups .P, R, a, Ic and A. With r = 00, B = -mk 
and by varying k from 0 to co we can vary B over the range 0 to - 00. This will give 
us an indication of the effect of the parameters that make up B, but which, for 
simplicity, we have fixed. 

Note also that when k+ 00, we obtain the same simplification in the boundary 
conditions (2.27d, e )  since $ + 0. Thus, the problem becomes independent of the 
parameters K ,  p, r and 9, and our analysis is valid with no further parameter 
restrictions. 

In  general, one cannot prove that the principle of exchange of stabilities is valid 
for this problem because of the appearance of the odd derivatives in ( 2 . 2 7 ~ )  and 
(2.27 b). However, we have solved these equations with a finite-difference scheme 
which showed that the principle is true near the critical points of the linear theory 
by verifying that a, = 0 at the minimum of the neutral curve. These finite-difference 
calculations were done for both B = 0 and - 00 with h = 0 and P = 0.01 and lo6, and 
with h = 10 and P = 0.01 and 1. 

The remaining eigenvalue calculations were done using the routine SUPORT, 
written by Scott & Watts (1975, 1977). Briefly, this code uses a variable step-size, 
Runge-Kutta integrator coupled with a superposition algorithm to solve the 
boundary-value problem. Orthonormalization is also included to overcome any 
stiffness problems associated with the differential system a t  large values of the 
Rayleigh number. The eigenvalue part of the calculation is based on a secant-method 
iteration algorithm written by the author. 
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The only remaining subtlety in the numerical solution is the handling of the 
boundary conditions a t  infinity. New conditions were developed asymptotically by 
solving the governing system (2.27) in the limit of large z ,  for which ji+l and 
dTL/dz + 0. Our equations become 

(D2 -a2 +P-’D) (D2-a2) &+ Ra2FL = 0, 

( D ~ - ~ ~ + D ) F ~  = 0, 

where the principle of exchange of stabilities has been used. These equations can be 
solved exactly for pL and &. We find that 

&,Tz - e-82, 

s = +[I + (1  +4a2)f]. 

From these relations, we pose the boundary conditions 

D F ~ + ~ T ~  = 0, D&+& = 0, D ~ ~ ~ , + ~ D Z &  = 0, (3.la-c) 

on z = zmax, where zmax is some suitably large number. 
The advantage of using these A asymptotic boundary conditions as opposed to the 

simpler set of conditions, i.e. TL = th = D& = 0 on z = zmax, is that the previous set 
of conditions yields much better accuracy for the same value of zmax and the solution 
appears to be much less sensitive to the value of zmax, provided that it is large 
enough. 

4. Results 
Representative neutral curves are shown in figure 2 for k = 1 ,  P = co and 0.01, and 

h = 0 and 10. The curves display a clear minimum, or critical point, at a relatively 
small value of a. The small circle on curve ( c )  indicates that  the neutral curve ceases 
to exist beyond this point. Presumably, the instability becomes time periodic for 
these larger wavenumbers. Future work will be concerned with the study of these 
unsteady modes since it is possible for one of them to become the critical mode of 
instability in some parameter range. The cross on curves (b ,  d )  indicates a failure of 
the numerical algorithm to calculate the neutral point for this value of the 
wavenumber due to overflow errors caused by the exponentials in the governing 
equations. This problem can be overcome through the use of a coordinate 
transformation as employed by Hurle et al. (1983). We shall not pursue this matter 
since the error occurs well past the critical point and does not affect our results. 

The remaining data curves are plots of the minimum Rayleigh umber R, and the 
wavenumber a t  this minimum a, versus the parameters P, h and k. Figure 3 (a, b )  
shows the dependence of R, and a, on P with h = 0 and for k = 0 , l  and 00. This value 
of h represents the constant-viscosity case. Note the monotonic decrease in R, and 
a, with increasing P. For small P,  the curves indicate that R, - P-I. These curves 
also show that the influence of k is small. At P = 0.01 the difference in R, from k = 0 
to k = co is 22% while a t  P = co it  is 14%. The k = 1 curve for the Rayleigh 
number is almost indistinguishable from the k = 0 curve so it was not plotted. The 
wavenumber a, shows only a slight variation with k over this Prandtl-number range. 
The total change is never more than -0.01 to +0.02 with respect to the value when 
k = 0. 

We can compare these results for R, and a, directly with the results of Hurle et al. 
(1983). Their governing equations (5) and (6) for the instability of a binary alloy 
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R lo3 
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a 

FIGURE 2. Neutral curves with k = 1 and for (a )  P = co, h = 0, (6) P = co, h = 10; x indicates 
that  the curve could not be computed beyond this point owing to numerical overflow errors, 
(c) P = 0.01, h = 0;  0 indicates the neutral curve ceases to exist beyond this point for ui = 0, 
and (d) P = 0.01, A = 10; x indicates that the curve could not be computed beyond this point 
owing to numerical overflow errors. 

during directional solidification is exactly the same as our system if we set k = 0 and 
use a value of their partition coefficient equal to one. We find that R, differs by a t  
most 1.6% and a, agrees to two significant figures. 

Figure 3 ( c ,  a?) shows curves for the dependence of R, and a, on P when h = 15. The 
same trends are apparent with only a larger value of R,. Here, the difference in R, 
between k = 0 and k = co for P = 0.01 is 3% and for P = co it is only 1 %. Such a 
small difference is indistinguishable on the plot, so only the k = 1 curve was plotted. 
From these results, we see that the influence of k on R, for these large values of h has 
been significantly reduced. Also, the P-l dependence of R, for small P has been 
destroyed, a t  least for these values of P. We calculate that R, - P-0.85 a t  P = 0.01, 
but it does not seem that a limiting value of the exponent has yet been obtained. The 
magnitude of the changes in a, with k over the full Prandtl-number range is the same 
as before. 

Figure 3(a-d) also shows that R, and a, approach constant values for P+ 00. 

These values are listed in table 1 for h = 0 and 15. 
The influence of the parameter A on R, with k = 0 and k = 00 and for two values 

of P is shown in figure 4 ( a ,  b ) .  Here, we can clearly see the diminishing influence of 
the parameter k as h increases for both values of P.  Also note that R, increases 
monotonically and eventually becomes linear with A for A greater than about four 
when P = co and for h greater than about eight when P = 0.01. The right-hand scale 
in figure 3 ( c )  shows the behaviour of fi, = R,/h versus P with k = 1 in this limit of 
h + co. Numerical values of 8, in this limit are listed in table 2. 
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FIGURE 3 ( a , b ) .  For caption see facing page. 
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FIGURE 3. The influence of the Prandtl number on (a)  R, for h = 0 ;  -, k = 0;  ---, k = co ; ( b )  
a, for A = 0 ;  -, k = 0 ;  --, k = 1 ; ----, k = co ; ( c )  R, for h = 15 and k = 1 on the left-hand 
scale and 8, for k = 1 on the right-hand scale; and (d )  a, for h = 15; ---, k = 0; --, k = 1 ; 

, k =  CO. --__ 
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FIGURE 4. The influence of the parameter h on R, for (a )  P = 03; -, k = 0;  ----, k = 03; 
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R, a, 

k = O  1 m k = O  1 m 
h=O 12.46 12.60 14.16 0.36 0.35 0.36 
A =  15 157.4 157.5 159.1 0.37 0.36 0.37 

TABLE 1 .  Asymptotic values of the critical Rayleigh number R, and the critical wavenumber a, 
as P+ 00 for h = 0 and 15 and k = 0, 1 and m 

k = O  1 m k = O  1 m 
P=CO 10.49 10.50 10.59 0.37 0.36 0.37 
P =  0.01 225.3 226.0 229.7 0.56 0.56 0.57 

TABLE 2. Asymptotic values of the critical Rayleigh number 8, and the critical wavenumber a, 
a s h + m f o r P = m a n d O . O l a n d k = O ,  l a n d m  

The variation of a, with h for P = 00 shows an increase of a t  most 0.01 for the full 
range of h and the three values of k considered. At P = 0.01, a, decreased by a t  most 
0.03 through the full range of A. The limiting values of a, for h + co are also shown 
in table 2. 

5. Discussion 
The primary result of interest is the fact that R, - h for large A. This result implies 

that a simple rescaling of the problem is needed. The required scaling starts with the 
translation z = In h + E which renders the function ji = ef, with f = hepz independent 
of A,  i.e. f becomes e-5. Using this change of variables and the scalisgs d = A-'& and 
fi = h-'R the governing equations (2.27) with p = 1 become 

{D2-a2 -2fD + e-fF1D}{D2 -a2} d+ f(  1 + f )  (D2 +a2)  d + e-fa2gFL = 0, (5.1 a) 

{D2fD-a2}~L-fzjj = 0, (5.1 b )  

d = D d  = 0, DpL+B$L = 0 on 6 = -lnh, (5 . l c ,d , e )  

! F L = ~ = ~ ~ = o  o n t = O o .  ( 5 . l f ,  9 ,  h )  

I n  these equations, h only appears in the location of the upper boundary condition. 
In  the limit of h + co, the equations become entirely independent of A. Thus, both R 
and Zi, scale linearly with h for large A, in total agreement with our computations. 

The physical interpretation of this scaling can be seen in figure 5 (a ,  b )  which shows 
contour plots for the streamlines of two-dimensional convection rolls with k = 1,  
P = 00 and h = 0 and 15. The dotted line in figure 5 ( b )  is the position zo = lnh. Note 
that the region 0 < x < zo in figure 5 ( b )  is practically motionless. This clearly 
illustrates a stagnant layer composed of fluid with the largest viscosity in agreement 
with the results of Stengel et al. (1982) and Jaupart & Parsons (1985) as discussed 
earlier. The appropriate temperature scale for the convecting region between z = zo 
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FIGURE 5. The streamlines of two-dimensional convective rolls for k = 1, P = 00 and (a) h = 0, and 
( 6 )  h = 15. Both plots cover a non-dimensional size of 30 x 30. The dashed line in (b )  marks the 
position z,, = lnh, the extent of the stagnant layer. 
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and z = 00 in this limit of large A is ATo = h-'AT, which represents the temperature 
difference across this convecting region. The Rayleigh number becomes 

exactly the result of our previous mathematical scaling argument. Thus, in the limit 
of large A, the thickness of the stagnant layer is approximately In h and the Rayleigh 
number scaled on the temperature difference across the convecting region becomes 
constant. Note also that the viscosity varies by only a factor of e across this 
convecting region. 

We can also derive this scaling result directly using an appropriate definition of a 
local Rayleigh number. Considering that convection in these systems with large 
viscosity variations always seems to occur in a sublayer near the region of smallest 
viscosity, we define a local Rayleigh number R, based on convection in a sublayer 
between the position z and infinity. Using the temperature difference in this sublayer 
and the viscosity a t  z ,  we find that R, = R expi-z-hexp ( - z ) } ,  where R is the 
original Rayleigh number. When convection occurs, it must first occur in that 
sublayer with the largest possible value of R, and only when that R, exceeds a certain 
critical value. The maximum value of R, occurs a t  z = z,,, defined by the equation 

This yields (5.4~4 b)  

Thus, the convecting region lies between z = lnh and z = CO. Above this sublayer, 
there is a stagnant layer of thickness lnh which shields the convecting region from 
the effects of the upper interface. When h is large enough, this stagnant layer 
completely shields the convecting zone and the critical value of R,ImaX becomes 
constant. Thus, for large A ,  R becomes linear in h as we have seen before. The factor 
of e in (5.4b) is just the difference between the viscosity at  the top and a t  the bottom 
of the sublayer. 

Figures 3 and 4 from the previous section indicate that the influence of the 
parameter k is fairly weak, especially as h + co . This behaviour is easily explained by 
considering the mechanism of the instability. Following Chandrasekhar ( 1961), we 
construct the following energetics equation for the system : 

- db = f + Y - 3 ,  
dt (5 .5)  

where d is the mechanical and thermal energy in the convection motion over one 
wavelength, f is the potential energy, 9' is the energy lost or gained by conduction 
through the solidifying interface and 3 is the energy dissipation in the system due 
to viscous and thermal effects. 

In  our system, the main source of energy for the instability is the release of 
potential energy when a hot fluid particle rises to a colder position. This energy is 
represented by the integral 

f = -1; (Ra2+T,)&dz. 
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The parameter k is part of the thermal boundary condition and so changes in k 
primarily affect the temperature field. In figure 6 (a), we show the magnitudes of the 
temperature and the vertical velocity eigenfunctions for P = 03, h = 0 and k = 0 and 
00 normalized on the maximum value of the vertical velocity. The Rayleigh number 
and wavenumber are set at the critical values for k = 0. Since the temperature shown 
is the negative of the actual temperature in the system, the primary change when k 
is varied is an increase in the temperature near the solidifying boundary. This results 
in a decrease in the potential energy liberated during the motion which stabilizes the 
system, i.e. R, increases as k is increased. 

Note also that the change in the temperature is confined to a region near the 
solidifying boundary. At large values of A, this region becomes stagnant, i.e. & also 
decreases. This results in a smaller change in the integral 9 and a decrease in the 
effect of k on R, as we have shown. Figure 6 ( b )  displays this behaviour in the 
eigenfunction for P = co and h = 5. 

By varying the parameter k from 0 to co we have in effect studied the influence of 
the Biot number over the range 0 to - 00. This gives us some indication of the effect 
of the parameters r, 9 and K which make up the Biot number, but which we initially 
fixed. We can conclude from our results that the effect on R, represented by these 
parameters, i.e. interface deflection, latent heat and conduction a t  the interface, is 
also weak, especially a t  large values of A. 

Figures 3 and 4 show a very significant increase in the critical Rayleigh number as 
P is decreased. This is explained by considering figure 7 ( a ) .  Here, we see the 
magnitudes of the eigenfunctions for temperature and vertical velocity for k = 1, 
h = 0 and P = 00 and 1 with a normalization based on the temperature a t  the 
interface. The Rayleigh number and wavenumber are set a t  the critical values for 
P = 00. For the lower value of P, the vertical velocity is substantially reduced. This 
is due to inertial effects in that for a given temperature perturbation of a fluid 
particle, the resulting buoyancy force must balance both the acceleration and the 
viscous forces on the particle. This decreases the magnitude of the vertical velocity 
as shown, and consequently the amount of potential energy released is also 
decreased. Thus, the system becomes more stable as P decreases and so R, increases. 
Figure 7 ( b )  shows the eigenfunctions for h = 15 and P = co and 1. Note that the 
same effect occurs since it is associated with the bulk fluid. This is in contrast to the 
effects of the parameter k which is just an interfacial effect. 

The critical Rayleigh numbers calculated in this study are very small compared 
with those from the classical studies of finite layers. This is due to our use of the 
thermal-diffusion lengthscale L, = K J  V .  The classical studies used a lengthscale 
based on the layer thickness over which the temperature difference is imposed. To 
compare our results to these studies, we define a new lengthscale L,* as the distance 
over which the temperature difference is 99% of the total temperature difference 
available for convection. This definition results in the relation L,* = (2 In 10) L, for 
both the constant- and variable-viscosity cases. With this new lengthscale, we obtain 
a Rayleigh number R* = (2 In 10)3R = 97.66R and a wavenumber a* = (2 In 10) 
a = 4.605~.  Table 3 lists R,* and a,* for P = co and h = 0 and 00. Note that the value 
of R,* is now about 1000-1400 and a,* is approximately 1.6-1.7. These values are now 
of the same order of magnitude as the classical values of R, = 1100.65 and a, = 2.682 
for a rigid free layer with constant-temperature boundary conditions (Chandrasekhar 
1961). 

This general agreement between the two studies does not mean that the 
lengthscale Lz fully defines this solidification problem because it does not define the 
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Rr 4 
k = O  1 00 k = O  1 0O 

A = O  1217 1231 1383 1.66 1.61 1.66 
A = 0 O  1025 1026 1034 1.70 1.66 1.70 

TABLE 3. The rescaled critical Rayleigh number R,* and the critical wavenumber a: for P = 00, 

A = 0 and 00, and k = 0, 1 and 00 

depth of penetration of the convective rolls. As shown in figure 6, convection occurs 
in a region on the order of 20L,. This larger penetration is due to the effects of 
viscosity. 

In applying this theory to a solidifying magma system, we shall use the 
following typical property values : /3 = 5 x cm2/s, p = 2.6 g/cm3, 
,urn = lo2 g/(cm s), ,ur = lo7 g/(cm s) and a melting temperature T, = 1100 "C. 
Relevant dimensionless groups are P = 3850, k = 1 and h = 11.5. Given a 
AT = 200 "C and using the appropriate value of 8, = 10.5 from table 2, we find 
that the critical velocity below which the system is unstable is 

O C - l ,  K = 

V, = 6.0 x cm/s = 1.9 km/yr. 

Since an average solidification speed for these systems may be on the order of 
V = 0.01 km/yr, we can expect the appearance of convection. 

The critical velocity is reached early in the solidification of the liquid. Using the 
standard Stefan model of this process and ignoring latent heat (see Carslaw & Jaeger 
1959), we find that the velocity of the interface is V = q(KL/t)i, where q = 1.01. Thus, 
V, occurs 280s after the start of solidification. The crust is 3.4cm thick at this 
point. 

The thermal lengthscale associated with the above property values at the critical 
point is L, = 1.67 cm. Other lengthscales of interest at  this critical value for the 
solidification velocity are as follows. The length over which 99% of the total 
temperature difference occurs is L,* = 7.7 em, an estimate of the stagnant-layer 
thickness is L, = L, lnh = 4.1 cm, and an estimate of the size of the convecting 
region below the stagnant layer is L, = 2OL, = 33.4 cm. The thickness of a typical 
magma chamber may be on the order of one or several kilometers. This distance is 
much larger than the lengthscales in our convection process so the assumption of a 
semi-infinite fluid is valid. Also, from table 2 we have a, = 0.36, which yields a width 
for the convection cell of L, = 14.6 cm. The ratio L,/L, = 0.44 indicates that the 
cells are not quite half as wide as they are deep. 

Using the average solidification velocity from above, we find that the typical value 
of the Rayleigh number for these systems is 8 = 7 x  lo' with a corresponding 
lengthscale of L, = 315 cm. Since the critical Rayleigh number for this system is 
E ,  = 10.5, we are driving the system a t  about 6.67 x lo6 times critical. If we assume 
for the sake of discussion that the convection can still be characterized by its 
lengthscales at the critical point, we find that L,* = 14.5 m, L, = 7.7 m, L, = 63.0 m 
and L, = 27.5 m. Thus, convection extends about 71 m below the solidifying 
interface. This distance is still much less than the kilometer-sized chamber, so the 
semi-infinite model may still be valid even at  these extremely slow solidification 
velocities. 

There are two relevant timescales in this study. The firat, t,, is the time rate of 
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change of the interface velocity V. We calculate this from the standard Stefan 
problem as t, = IV(dV/dt)-'l = 2t, where t is the time a t  which the velocity V occurs. 
The second timescale t, = ts/Br measures the growth rate of the disturbance. Here, 
t ,  is the diffusive timescale. At the critical velocity, t, = 566 s and t, = 278 s, and a t  
the average velocity t, = 230 days and t, = 113 days. 

For this model to  be an accurate representation of a solidifying system, t, -4 t,. 
Using the standard Stefan model for V ,  we obtain CT, % 1/(2q). As with all of these 
quasi-steady models, the model is invalid a t  the critical point where B, = 0. 
However, the model does yield a qualitative description of the system, especially 
when the growth rate of the disturbance is much larger than about one-half. 

Large Rayleigh-number convection in thin layers with constant temperature 
boundaries is very vigorous and large heat fluxes occur at both the top and bottom 
surfaces. In a solidifying magma system this may not be the case. The heat flux out 
of the top of the system controls the solidification velocity. In a naturally cooling 
system described by the standard Stefan model, the heat flux from the top and the 
solidification velocity decrease like t-1. This decrease in V increases the lengthscale of 
the convection and so the net potential energy available for convection increases. 
This makes the system more unstable as we have seen. However, the resultant 
convection can only reduce the temperature difference in the fluid over this new 
lengthscale since there is no heat flux through the bottom and the heat flux through 
the top is limited by the solid. This reduces the net potential energy available for 
convection which in turn stabilizes the system. Thus, convection competes with the 
decreasing solidification velocity and the final result may be a gentle circulation not 
much different, than that just past the critical point. 

6. Conclusions 
We have used linear stability theory to study the onset of buoyancy-driven 

convection during the directional solidification of a liquid with a strongly 
temperature-dependent viscosity and an arbitrary Prandtl number. The Rayleigh 
number for this system contains the lengthscale L, defined as the ratio of the thermal 
diffusivity and the solidification velocity times the density ratio of the two phases. 
It is independent of the actual depth of the liquid and it reflects the fact that 
increasing the solidification velocity stabilizes the system. Typical values of the 
critical Rayleigh number are listed in tables 1 and 2. 

For large viscosity variations, a stagnant layer forms just below the solidifying 
interface where the liquid becomes immobilized by its very large viscosity. The 
thickness of this layer is approximately L, In A, where h = In (y,/,uu,) is the natural 
logarithm of the viscosity contrast in the liquid. Convection occurs below the 
stagnant layer. In the limit of large viscosity variations, the critical Rayleigh 
number becomes linear in A. This suggests a new temperature scaling based on the 
temperature difference across the convecting layer only. This resealed Rayleigh 
number fi is defined in (5.2). 

The theory also shows that the material properties associated with the two phases 
manifest themselves in a wavenumber-dependent Biot number for the solidifying 
interface. This causes the interface to look like a boundary of finite conductivity. 
However, the effect of this conductivity is small since it is purely an interfacial effect 
and the convection is driven by body forces in the bulk liquid. Decreasing the Biot 
number from zero to - 00 changes the critical Rayleigh number by a t  most 22 YO for 
a constant-viscosity liquid. In  the limit of large viscosity variations, the influence of 
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the solidifying boundary is shielded from the bulk liquid by the stagnant layer and 
so the effect of the Biot number on the critical Rayleigh number is even smaller, i.e. 
only 3% over this same Biot number range. 

However, inertial effects, being associated with the bulk liquid, are very important 
for small Prandtl numbers of the fluid far from the interface. Id this limit, R, - P-' 
for the constant-viscosity case and R, - P-0.85 at P = 0.01 in the limit of large 
viscosity variations. 

The critical Rayleigh number for a system with large viscosity variations is 
8, = 10.5. In a typical cooling magma system, this value is exceeded when 
V < 1.9 km/yr. An average solidification velocity for such a system is about 
0.01 km/yr so some form of convection is expected. The lengthscale associated with 
this convection at both the critical velocity and the average velocity is still much 
smaller than the typical thickness of a magma chamber. Thus, our model of a 
semi-infinite liquid is valid for studying these systems. 

The above critical solidification velocity occurs early in the solidification of the 
magma. As the process continues, the solidification velocity and the heat flux from 
the system decrease. This increases the lengthscale over which temperature changes 
occur in the liquid thereby destabilizing the system. Convection on the other hand, 
being constrained by the heat-flux conditions at the system boundaries, attempts to 
destroy the net temperature difference across the liquid which in turn stabilizes the 
system. These two competing effects could result in a new equilibrium in which only 
a gentle circulation is present in the liquid. This is in contrast to the vigorous 
convection that occurs a t  large Rayleigh numbers in thin-liquid-layer systems with 
fixed temperature boundaries. Future work on this system using nonlinear techniques 
is needed to verify this hypothesis. 

The author is very grateful to Professor Bruce D. Marsh for many interesting 
discussions, during which we quantified his intuitive physical understanding of the 
role of convection in solidifying magma systems into the model used in this study. 
The figures in this paper were drawn using the NCAR graphics system. 
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